LangChain for Java

LangChain for Java, also known as Langchain4J, is a community port of Langchain for building context-aware AI applications in Java

You can use Qdrant as a vector store in Langchain4J through the langchain4j-qdrant module.

Setup

Add the langchain4j-qdrant to your project dependencies.

<dependency>
    <groupId>dev.langchain4j</groupId>
    <artifactId>langchain4j-qdrant</artifactId>
    <version>VERSION</version>
</dependency>

Usage

Before you use the following code sample, customize the following values for your configuration:

  • YOUR_COLLECTION_NAME: Use our Collections guide to create or list collections.
  • YOUR_HOST_URL: Use the GRPC URL for your system. If you used the Quick Start guide, it may be http://localhost:6334. If you’ve deployed in the Qdrant Cloud, you may have a longer URL such as https://example.location.cloud.qdrant.io:6334.
  • YOUR_API_KEY: Substitute the API key associated with your configuration.
import dev.langchain4j.store.embedding.EmbeddingStore;
import dev.langchain4j.store.embedding.qdrant.QdrantEmbeddingStore;

EmbeddingStore<TextSegment> embeddingStore =
    QdrantEmbeddingStore.builder()
        // Ensure the collection is configured with the appropriate dimensions
        // of the embedding model.
        // Reference https://qdrant.tech/documentation/concepts/collections/
        .collectionName("YOUR_COLLECTION_NAME")
        .host("YOUR_HOST_URL")
        // GRPC port of the Qdrant server
        .port(6334)
        .apiKey("YOUR_API_KEY")
        .build();

QdrantEmbeddingStore supports all the semantic features of Langchain4J.

Further Reading

Langchain4J

We use cookies to learn more about you. At any time you can delete or block cookies through your browser settings.

Learn moreI accept